
The Java Specialist Master Course 1

Productive Coder

Dr Heinz M. Kabutz

The Java Specialists’ Newsletter

© 2007-2011 Heinz Max Kabutz – All Rights Reserved

The Java Specialist Master Course 2

Productive Coder

How you can have more fun interacting with your
machine …

… and make your computer less frustrated with
having you as operator

The Java Specialist Master Course

Background

Heinz Kabutz
– Lives in Greece on the Island of Crete

– Java Programmer

– The Java Specialists’ Newsletter
• 50 000 readers in 121 countries
• http://www.javaspecialists.eu

– Java Champion

3

The Java Specialist Master Course

Crete - Real Reason

4

The Java Specialist Master Course

Two Events in Crete

 Java Specialists Symposium Crete 29 Aug - 1 Sep
– "Open Spaces" conference

– Title "Making Java Fun Again"

– Free entry, but seats are limited

 Java Specialists Master Course Crete 5-8 Sep
– Advanced Java Course for Java experts

– €2500 per seat

– You may also attend this remotely

5

The Java Specialist Master Course

Crete - Real Reason

6

The Java Specialist Master Course 7

Become One With Your Machine

 Typical programmer works 60 hours per week
– We all want maximum of 40 hours

Programmer and machine should be one
– Feel the machine

– Understand the machine

– Speak nicely to the machine :-)

Human Computer Interaction is progressing slowly
– You should be able to type this whilst at the same time watching TV.

– When you make a typing error, you should know that you have made
it without looking at the screen

The Java Specialist Master Course 8

Keyboard Skills

Not all programmers can touch type

But it is so easy:
– Each keyboard has dimple for index fingers on “F” and “J”

– From there, each finger controls the buttons above and below it

 Initial investment of about 20 hours

 Try to mainly use the keyboard – minimize mouse use
– Menu driven copy & paste …

European keyboard layouts bad for coding
– Semicolon and curly braces

– Use Dvorak or US keyboard layouts and type blindly

The Java Specialist Master Course 9

Keyboard Magic

Back to the basics of working with computers

Applies to any language, not just Java

But, Java’s IDEs make this approach even more
productive

The Java Specialist Master Course 10

Keyboard Shortcuts

Memorise as many as possible

Use them frequently

 Try to minimize mouse usage

Every IDE is different
– Sometimes on purpose it seems

– CTRL+D in IntelliJ & Eclipse

 Learn vim
– Productive for small jobs

– Good discipline in keyboard use

The Java Specialist Master Course

Keyboard Stickers

11

The Java Specialist Master Course 12

Know Your IDE

Currently using IntelliJ 7.0.5 and 10.5
– Eclipse and Netbeans also excellent nowadays

Short demo of how to create three classes:
– Flower, RarityStatus,

FynbosFan

Orothamnus
zeyheri
(Marsh Rose)

The Java Specialist Master Course 13

Which IDE ? – Does Not Matter!

Whatever your choice, it’s your choice

Spend 10 hours getting to know keyboard shortcuts

The Java Specialist Master Course 14

Fingers Overtaking the Brain

You still need to plan
– Stop & think before you start

When shortcuts & fingers
are too fast:
– Increase speed of your brain

– Think in higher level concepts, such as Design Patterns

The Java Specialist Master Course 15

Design Patterns

Mainstream of OO landscape, offering us:
– View into brains of OO experts

– Quicker understanding of
existing designs
• e.g. Visitor pattern used by

Annotation Processing Tool

– Improved communication
between developers

– Readjusting of “thinking mistakes” by developers

The Java Specialist Master Course 16

Vintage Wines

Design Patterns are like good red wine
– You cannot appreciate them at first

– As you study them you learn the difference between plonk and
vintage, or bad and good designs

– As you become a connoisseur you experience the various textures
you didn’t notice before

Warning: Once you are hooked, you will no longer be
satisfied with inferior designs

News: Design Patterns Course self-paced learning TBA

The Java Specialist Master Course 17

“Houston, We Have a Problem”

 “Our lead developer has left”
– Software works most of the time

– We have to fix it, and add some features …

How do you start?
– What code is dead?

• Stories of whole teams working on dead code for years

– Where are the unit test?

– Where could access control be tighter?

– What portion of code is commented?

– How can I find bad code? Copy & paste code?

The Java Specialist Master Course 18

Initial Investigation

Check where comments are missing
– Doclet that checks that all elements are documented

http://www.javaspecialists.eu/archive/Issue049.html

 Find fields that are not private
– Doclet that runs through your code and finds non-private fields

http://www.javaspecialists.eu/archive/Issue035.html

Count number of classes, lines of code per class
– Aim is for average of less than 100 lines per class

– One of my customers had one Java class > 30000 LOC

Run code coverage tool against unit tests

The Java Specialist Master Course 19

What are Realistic Values?

Beware, LOC is only a rough measurement

Classes Total LOC
AVG/STDEV

Uncommented
Elements

Project 1
South Africa

1359 263790
194 / 337

24291
18 per class

Project 2
Germany

442 62393
141 / 149

7298
17 per class

Ideal 1000 80260
80 / 61

1000 max
1 per class

The Java Specialist Master Course 20

Comments Should Explain “Why”

Should not just be: Method getName returns the name.

Switch off automatic comment generation

Either fill in comments properly, or leave them out

Method names and parameters should be descriptive

 “Why I don’t read your code comments …”
– Most misunderstood newsletter

– http://www.javaspecialists.eu/archive/Issue039.html

– I do write my own comments, but about “why” not “what”

– But, I seldom find projects with well-written comments

The Java Specialist Master Course 21

Comments: java.awt.color.ColorSpace

 Rather insightful comment in JDK 1.3:

 /**
 * Returns the name of the component given the
 * component index
 */
public String getName (int idx) {
 /* REMIND - handle common cases here */
 return new String(
 "Unnamed color component("+idx+")");
}

 What is “REMIND” supposed to tell us?

The Java Specialist Master Course 22

Comments: java.awt.color.ColorSpace

 In JDK 1.4, more comments, but still the question
/**
 * Returns the name of the component given the
 * component index.
 * @param idx The component index.
 * @return The name of the component at the
 * specified index.
 */
public String getName (int idx) {
 /* REMIND - handle common cases here */
 return new String(
 "Unnamed color component("+idx+")");
}

The Java Specialist Master Course 23

Comments: java.awt.color.ColorSpace

 Java 5
/** Returns the name of the component given the
 * component index.
 * @param idx The component index.
 * @return The name of the component at the
 * specified index.
 * @throws IllegalArgumentException if idx is less
 * than 0 or greater than numComponents – 1 */
public String getName (int idx) {
 /* REMIND - handle common cases here */
 if ((idx < 0) || (idx > numComponents - 1)) {
 throw new IllegalArgumentException(
 "Component index out of range: " + idx);
 }
 return new String(
 "Unnamed color component("+idx+")");
}

The Java Specialist Master Course 24

Comments: java.awt.color.ColorSpace

Java 6
/** Returns the name of the component given the
 * component index.
 * @param idx The component index.
 * @return The name of the component at the
 * specified index.
 * @throws IllegalArgumentException if idx is less
 * than 0 or greater than numComponents – 1 */
public String getName (int idx) {
 /* REMIND - handle common cases here */
 if ((idx < 0) || (idx > numComponents - 1)) {
 throw new IllegalArgumentException(
 "Component index out of range: " + idx);
 }

 if (compName == null) {
 switch (type) {
 case ColorSpace.TYPE_XYZ:
 compName = new String[] {"X", "Y", "Z"}; break;

The Java Specialist Master Course 25

Commenting Out Code

Source Control Systems
– Have been around for decades

Don’t duplicate work done by source control

 If code is dead, delete it, don’t comment it out

The Java Specialist Master Course 26

Funny Comments

 JDK 1.3: java.io.ObjectStreamClass
private final static Class[] NULL_ARGS = {};
//WORKAROUND compiler bug with following code.
//static final Class[]OIS_ARGS={ObjectInpuStream.class};
//static final Class[]OOS_ARGS={ObjectOutpuStream.class};
private static Class[] OIS_ARGS = null;
private static Class[] OOS_ARGS = null;
private static void initStaticMethodArgs() {
 OOS_ARGS = new Class[1];
 OOS_ARGS[0] = ObjectOutputStream.class;
 OIS_ARGS = new Class[1];
 OIS_ARGS[0] = ObjectInputStream.class;
}

 “The compiler team is writing useless code again …”
– http://www.javaspecialists.eu/archive/Issue046.html

Shouldn’t that be
ObjectInputStream?

The Java Specialist Master Course 27

“Wonderfully Disgusting Hack”

 JDK 1.4: java.awt.Toolkit
static boolean enabledOnToolkit(long eventMask) {
// Wonderfully disgusting hack for Solaris 9

 This made me think:
– All software contains hacks.

– I would prefer to know about them.

– Only a real developer would write "hack" into his comments.

– Rather use Java than black-box proprietary solution with hundreds of
undocumented hacks

 “Wonderfully Disgusting Hack”
– http://www.javaspecialists.eu/archive/Issue077.html

The Java Specialist Master Course 28

Before You Change Any Code…

Refactoring is dangerous!

You must have good unit tests
– And great skill if you don’t have unit tests…

Also system tests

 In troubled projects, unit tests often absent

The Java Specialist Master Course 29

Real-Life Case Study

Customer has kindly agreed for you to see his code

Domains, names, etc. have been altered

 This is not the worst I have had to work with

The Java Specialist Master Course 30

Real-Life Example

Company someone.com has Java application

Single programmer has left

 Features must be added and bugs fixed

 Initial stats:

Classes Total LOC
AVG / STDEV

Uncommented
Elements

Someone.com 97 19478
201 / 181

2461
25 per class

The Java Specialist Master Course 31

Better Metrics

 Fanout (FO)
– Number of other classes used in

• Fields
• Parameters
• Local variables
• Return
• Throws

– Primitives and supertypes not counted

– Recommended maximum of 15

– Warning sign: Large number of “import” statements

The Java Specialist Master Course 32

Better Metrics

Halstead Program Length (HPLen)
– Halstead Software Science metric

• Calculated per class
• 'Number of Operators' + 'Number of Operands‘

– Maximum of 2000

– Average should be much less

The Java Specialist Master Course 33

Better Metrics

Maximum Size Of Operation (MSOO)
– Counts maximum size of operations for a class

– Method size determined by cyclomatic complexity
• number of if, for and while statements

– Finds overly complex, badly factored methods

The Java Specialist Master Course 34

Better Metrics

Number Of Added Methods (NOAM)
– Counts the number of operations added by a class

• Inherited and overridden operations are not counted

– Absolute maximum is 50
• Maybe too generous?

– Large value means subclass is too different to superclass

The Java Specialist Master Course 35

What do the Metrics Say?

The Java Specialist Master Course 36

Encapsulation

Encapsulation is more than private fields
– Though all non-constant fields should be private

Getters and Setters often break encapsulation

What is the difference between public getName() and
setName() methods and making field public?
– Yes, you can check input values

– Fundamental problem – we are not delegating responsibility
• E.g. Entity Beans History

The Java Specialist Master Course 37

Non-private Fields

 Search with Doclet
– http://www.javaspecialists.eu/archive/Issue035.html

 Output:
– Non-private data members:
public com.someone.gui.InfoFrame:
 java.lang.StringBuffer buffer
public com.someone.gui.TableMap:
 protected javax.swing.table.TableModel model
public com.someone.io.DelimitedFileDataSource:
 protected java.lang.String[][] data
 protected int index
public com.someone.io.DelimitedFileReader:
 protected java.lang.String fileName
 protected java.lang.String[] headers
 protected int numberOfFields

Found 203
non-private

non-constant
fields

The Java Specialist Master Course 38

Fixing the Code

Either make them all private and see what breaks
– Kind of tedious

Or use a tool to tighten field access control
– Made me into an IntelliJ convert

– Short demonstration …

Rerun the doclet: 104 non-private fields
– An improvement from 203!

Now real work begins – why are they not private?

The Java Specialist Master Course 39

Immutable Fields

 Fields should be marked “final” where possible
– http://www.javaspecialists.eu/archive/Issue025.html

 Immutable objects are easier to work with
– Helps discover bugs

– Synchronization is easier

Garbage collector copes well with short-lived objects

A class with descriptive long names

public class SessionConnectorWithRetryAtLeastThreeTimes {
private String connectionNameReceivedFromInternet;
private int numberOfTimesThatWeShouldRetryAtLeast;

}

The Java Specialist Master Course 40

Add a Constructor

public class SessionConnectorWithRetryAtLeastThreeTimes {
private String connectionNameReceivedFromInternet;
private int numberOfTimesThatWeShouldRetryAtLeast;
public SessionConnectorWithRetryAtLeastThreeTimes(
 String c, int n) {
 connectionNameReceivedFromInternet = c;
 numberOfTimesThatWeShouldRetryAtLeast = n;
}

}

Problem – we need to read the comments to know what c
and n are

The Java Specialist Master Course 41

 It compiles and runs, but one field is not initialised
public class SessionConnectorWithRetryAtLeastThreeTimes {
 private String connectionNameReceivedFromInternet;
 private int numberOfTimesThatWeShouldRetryAtLeast;
 public SessionConnectorWithRetryAtLeastThreeTimes(

 String connectionNameReoeivedFromInternet,
 int numberOfTimesThatWeShouldRetryAtLeast) {
 this.connectionNameReceivedFromInternet =
 connectionNameReceivedFromInternet;
 this.numberOfTimesThatWeShouldRetryAtLeast =
 numberOfTimesThatWeShouldRetryAtLeast;
}

}

Use the Classic “this.” Assignment

The Java Specialist Master Course 42

Make Fields Final

Making them final shows the problem:
– Parameter connectionNameReoeivedFromInternet

So, make all fields as private and final as possible

Search for non-final fields using a Doclet
– Not published, but easy to write

– In our example, 644 fields were non-final

Again, fix either one class at a time, or use a tool
– Quick demonstration with IntelliJ – by hand takes longer

– We now have 380 non-final fields left

The Java Specialist Master Course 43

How Final is “final”?

 Java engineers ambivalent:
– JDK 1.1:

• Access control (private, etc.) not checked at runtime
• Final fields cannot be rebound at runtime

– JDK 1.2:
• Access control checked at runtime, setAccessible(true) overrides
• Final fields could be rebound at runtime with reflection

– JDK 1.3 + 1.4:
• Final fields cannot be rebound at runtime

– JDK 1.5 + 1.6:
• Final fields can be rebound at runtime with reflection
• Except when primitive or String fields are set at declaration time

The Java Specialist Master Course 44

Java Versions: When “final” Was Final

 Java versions and lifespans

 Suggestion: Treat final as if it really was …
– http://www.javaspecialists.eu/archive/Issue096.html

Version Code Name Release Date Lifespan
(months)

Final is
final

JDK 1.1.4 Sparkler 1997-09-12 15 Yes

J2SE 1.2 Playground 1998-12-04 18 No

J2SE 1.3 Kestrel 2000-05-08 21 Yes

J2SE 1.4 Merlin 2002-02-13 31 Yes

J2SE 5.0 Tiger 2004-09-29 18 No

The Java Specialist Master Course 45

Dead Code

Many times I have fixed bugs in dead code

Dead code should be pruned
– Make elements as private as possible

– Make fields final

– Search for dead code and delete

– GOTO 1

The Java Specialist Master Course 46

After Pruning Dead Code

Rerun the doclets:
– 89 classes (down by 8)

– 16879 LOC (down by 2599)

– 79 non-private fields (down by 25)

– 324 non-final fields (down by 56)

The Java Specialist Master Course 47

Back to Comments

Strip out useless comments and commented-out code
– Source Control System is doing source control

– Don’t duplicate effort!

– Root of problem is fear

 If commented code looks useful, leave a note
– E.g. // CodeComment removed

– Coder can look in source control system for CodeComment

Our system now has 14505 LOC
– Originally 19478 – reduced by over 25%

The Java Specialist Master Course 48

Depth of Inheritance Hierarchy

Complexity of code can be related to hierarchy depth

Overly deep hierarchies should be avoided

You can check the depth with this simple tool
– http://www.javaspecialists.eu/archive/Issue121.html

 Try beat our record:
– Proprietary code: hierarchy depth of 10

– Open Source: Hierarchy depth of 12
• Rob Mulcahey, Current Inc, Colorado Springs
• org.apache.batik.dom.svg.SVGOMAltGlyphElement

The Java Specialist Master Course 49

Exception Handling

Quick manual inspection for bad exception handling

Methods should not throw “Exception”
private void initGui() throws Exception {

initNorth();
tabbedPane = new JTabbedPane();
getContentPane().add(tabbedPane, BorderLayout.CENTER);

And the catch blocks should not be empty

The Java Specialist Master Course 50

Never Catch RuntimeException

Code should not catch RuntimeException
 try {

 data = FruitspecTableModel.getColumnData(i);
} catch (RuntimeException e) {
}

Replace that with a check on the value of “i”

 Implies not catching Exception
 try {

 data = FruitspecTableModel.getColumnData(i);
} catch (Exception e) {
}

The Java Specialist Master Course 51

Sloppy Exception Handling

Can cause parts of system to stop working
– Gives user false sense of security

All exceptions need to be noted
– Either logged to a file or the help desk

With Java 5 you can specify global exception handler
– http://www.javaspecialists.eu/archive/Issue089.html

– Nice, but does not solve the “poor coding” of empty catch blocks

The Java Specialist Master Course 52

Global Exception Handling

public class DefaultExceptionHandler implements
 Thread.UncaughtExceptionHandler {
 public void uncaughtException(Thread t, Throwable e) {
 // You need more robust, permanent record of problems
 JOptionPane.showMessageDialog(findActiveFrame(),
 e.toString(), "Exception Occurred",
 JOptionPane.OK_OPTION);

 e.printStackTrace();
}
private Frame findActiveFrame() {

 for (Frame frame : JFrame.getFrames()) {
 if (frame.isVisible()) return frame;
 }
 return null;
 }
}

The Java Specialist Master Course 53

Thread.setDefaultUncaughtExceptionHandler()
 public class EvenBetterGui {

 public static void main(String[] args) {
 Thread.setDefaultUncaughtExceptionHandler(
 new DefaultExceptionHandler());
 Gui gui = new Gui();
 gui.pack();
 gui.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);
 gui.setVisible(true);
 }
}

Register with Class Thread

The Java Specialist Master Course 54

Now Code is More Manageable

Now the real work starts:
– Find and eliminate duplicate code

– Encapsulate fields that are still non-private

– Set up test environment

 From here, you must tread carefully
– Make sure you can roll back easily

– Check frequently that code still works

The Java Specialist Master Course 55

Automatic Tools and Reflection

 Java tools rely on static compilation of classes

Be careful when using Reflection and Dynamic Proxies

The Java Specialist Master Course 56

Check your code

Regularly check your own work:
– Elements are properly commented

– Exceptions are handled correctly

– Fields are private

– Fields are final where possible

– Unit tests cover your code base

– Look for copy & paste code
• Sometimes difficult to eliminate

The Java Specialist Master Course 57

Develop with Pleasure!

Make your code a pleasure to work with

And don’t be scared of fixing messy code

The Java Specialist Master Course 58

Productive Coder

Dr Heinz M. Kabutz

The Java Specialists’ Newsletter

http://www.javaspecialists.eu

The Java Specialist Master Course 59

Some Keystroke Hints

 The appendix contains some hints on keyboard shortcuts
in Eclipse and IntelliJ

The Java Specialist Master Course 60

Eclipse

Create new class: Alt+Shift+N, C

Autocompletion on keywords?
– Type “in” followed by CTRL+Space …

• Reaching Esc is awkward on the keyboard
• My fingers have to leave the safety of the dimples

Error or unknown symbols in Eclipse – press Ctrl+1

How do I get back to the previous file without using the
mouse?
– Alt+left and Alt+right

The Java Specialist Master Course 61

Autogenerating Java Code

Make constructor: Alt+S, A
– Parameters not in same order as fields

• Though this may be a setting somewhere

– Enter does not work

– Names of parameters not the same as the fields

Getters / Setters: Alt+S, R
– Again, not in same order as fields & enter does not work

Main method: main Ctrl+Space

Ctrl + Shift + Space shows parameters

The Java Specialist Master Course 62

Eclipse Magic Keys

Ctrl+Space autocompletes
– “syso” generates: System.out.println();

– “for” generates: for (int i = 0; i < args.length; i++) { }

– Problem is that Ctrl+Space is awkward to type

Ctrl+1 autofixes code
– But cursor jumps all over the place 

An IDE needs to be like a chef’s knife, sharp and true

The Java Specialist Master Course 63

IntelliJ IDEA

 Create new class: In project window (Alt+1) Alt+Insert

 Autocompletion on keywords?
– Works a bit better…

– Type “in” followed by CTRL+Space …

 Error or unknown symbols in IntelliJ – press Ctrl+Enter
– F2 finds the next problem

 How do I get back to the previous file without using the mouse?
– Alt+Ctrl+left and Alt+Ctrl+right

The Java Specialist Master Course 64

Autogenerating Java Code

Make constructor: Alt+Insert
– Parameters same order as fields
– Names of parameters same as the fields

Getters / Setters: Alt+Insert
– It does what I expect

 equals() & hashCode(): Alt+Insert
– Enter does not work that well

Ctrl+plus and Ctrl+minus folds & unfolds methods

Main method: psvm Tab

The Java Specialist Master Course 65

IntelliJ Magic Keys

Ctrl + Shift + Space is intelligent autocomplete
– Extremely useful

 Tab fills in Live Templates
– “sout” generates: System.out.println();
– “itar” generates: for (int i = 0; i < args.length; i++) { }

Alt+Enter autofixes code
– Cursor stays in the same place 

Ctrl+W selects wider and wider scope

The Java Specialist Master Course 66

Style and Metrics Tools

 MetricsReloaded (IntelliJ IDEA Plugin)
– http://www.sixthandredriver.com/metricsreloaded.html

 Together Control Center

 CheckStyle
– http://checkstyle.sourceforge.net

 FindBugs
– http://findbugs.sourceforge.net

 Java PathFinder (from NASA)
– http://javapathfinder.sourceforge.net

 Project Mess Detector (PMD)
– http://pmd.sourceforge.net/

The Java Specialist Master Course 67

Questions?

Heinz Kabutz

heinz@javaspecialists.eu

